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RAY THEORY AND SHOCK FORMATION IN
RELATIVISTIC ELASTIC SOLIDS

By G.A. MAUGIN
Université Pierre-et-Marie-Curie, Laboratoire de Mécanique Théorique associé au C.N.R.S.,

Tour 66, 4 Place Jussieu, 15230 Paris 05, France

(Communicated by R. Penrose, F.R.S. — Received 18 December 1980)

A theory of rays, or bicharacteristics, is presented within the relativistic framework for
the matter scheme of anisotropic elasticity and its generalization to perfectly conducting
magnetic bodies. The equation governing the evolution of the amplitude (growth or
decay) of weak waves is obtained. This equation allows one to discuss the influence of
purely relativistic effects and the effect of initial states germane to the physical descrip-
tion of interest, e.g. high hydrostatic pressure and intense magnetic fields of various
settings, on the formation of caustics via the phenomenon of focusing, the resulting
steepening of the wave front and the subsequent formation of shock waves. Analytic
expressions are obtained for the values of the characteristic parameter corresponding
to the breakdown of the weak-wave solution for plausibly simple elastic behaviours and
various settings of the initial magnetic field. The relative influence, at both relativistic
and non-relativistic orders, of the nonlinearity of the material, the initial pressure, and
the direction of the magnetic field with respect to the wave-propagation direction and
the elastic-disturbance polarization is thoroughly discussed, some effects favouring,
others delaying, the formation of shocks. For magnetic bodies the present treatment
simultaneously provides results that prove to be useful in the non-relativistic theory of
magnetoelasticity in perfect conductors.
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1. INTRODUCTION

In a relatively recent paper (Maugin 1977), by using a simplified model of relativistic isotropic
elasticity and the distribution-theory method already used by Lichnerowicz (1967, 1971) in
relativistic hydrodynamics and magnetohydrodynamics, it has been qualitatively proven that
so-called weak, or infinitesimal, discontinuities propagating throughout a prestressed elastic
body could form shocks. That s, at one point along the bicharacteristics associated with the wave-
equation system, the infinitesimal-discontinuity solution might become unbounded for certain

p
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initial states and types of wave fronts, so that a strong discontinuity or shock solution might be
envisaged from then on. The qualitative nature of the proof obviously hindered the finding of the
critical value of the time-like parameter for which this strengthening of the wave solution occurs.
The quasilinear hyperbolic structure of the system of equations for the exact theory of nonlinear
isotropic relativistic elasticity, as developed in Maugin (1978 d), is more or less obvious (cf. Hughes
et al. 1977), so that the same type of phenomenon is also to be expected in this exact theory (see
general treatises on the matter, e.g. Whitham (1974), Jeffrey (1976)). The embryonic study of
shock waves for one-dimensional motions that has been given (Maugin, 1978, 1979 a) is there-
fore justified.
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The primary purpose of the present paper is to provide a quantitative proof of the strengthening
of wave fronts in relativistic elasticity, in a more general framework that might better correspond
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190 G.A.MAUGIN

to the physical situations encountered in certain dense astrophysical objects such as neutron
stars. Indeed, the external crust of such bodies, although built up of a highly incompressible but
elastic solid, does not behave isotropically, and probably behaves more like a cubic structure (cf.
Lamb 1977). Since in addition no linearization must be performed beforehand because of the
possibly extremely high pressures involved, we need an exact (i.e. with finite deformations)
relativistic theory of elastically anisotropic bodies. Such a theory was deduced in an early work
(Maugin 1971) from a variational principle in a general relativistic framework. Moreover, the
quantitative nature of the present work forces us to consider, in place of Lichnerowicz’s qualitative
method, the quantitative and geometrical description of singular surfaces given for relativistic
continuum mechanics in Maugin (1976). This description explicitly involves the geometry of the
wave front at the second order. Finally, another purpose of the work is to show clearly both the
effects of initial states, such as a high hydrostatic pressure, and the purely relativistic effects on
the strengthening of the wave fronts. Technical complexities, however, reduce the generality of
the work. First, only a propagation through a spatially homogeneous state of strains and stresses
ahead of the wave front will be envisaged. A general inhomogeneous state could be considered
at the price of lengthier calculations which would not change the nature of the results much.
Secondly, simple applications will refer to plane wave fronts and to bodies that behave almost like
Hookean bodies. General expressions will nonetheless be obtained before those simplifications.
Lastly, because we consider an anisotropic body we shall, in the end, study only a priori longi-
tudinally and transversely polarized wave fronts. Note also that the study of wave propagation
through a definite initial state would require as a premise the proof of the existence and unique-
ness of this initial state. This proof, however, is far beyond our present capabilities for the general
relativistic, anisotropic elastic scheme of matter (as itis also for its magnetoelastic generalization),
so that the existence and uniqueness of such a state will be assumed, even though some hints at
this proof are probably contained in the work of Hughes ¢t al. (1977).

In other recently published papers (Maugin 1978 4, ¢, ¢) the pertinence hasalso been emphasized
of taking intense magnetic fields into account in the studies concerned with wave-like motions in
the above-mentioned physical situations. Does not the crust of dense solid-like stars offer the best
example of a perfect conductor of electricity? Although both classical and relativistic magneto-
hydrodynamic schemes have been the object of numerous works as far as wave motion is con-
cerned (see, for example, Jeffrey & Taniuti (1964) for the classical framework and Lichnerowicz
(1971) for the relativistic one), nonlinear wave motions in magnetoelasticity have received much
less attention and not until the exhaustive work of Bazer & Ericson (1974) did one have a unique
and definitive work on these in the classical framework. Nonetheless, elements of nonlinear wave
motion in the relativistic framework were developed in Maugin (1978¢) with a view to studying
some aspects of the behaviour of dense astrophysical magnetic objects where a relativistic treat-
ment may be justified. This was achieved for bodies that behave isotropically in both their
mechanical and magnetic properties. In the present paper we shall consider the magnetoelastic
case of elastically anisotropic perfect conductors of electricity as a generalization of the purely elastic
case. Again, the basic theory needed in such a development has been given in Maugin (1971)
insofar as constitutive equations are concerned (see also Maugin 1978 a).

Section 2 is devoted to reviewing the essentials of relativistic anisotropic elasticity and magneto-
elasticity. In § 3 the general wave equation governing infinitesimal-discontinuity modes in the
purely thermoelastic case is obtained. A similar development is given in § 4 for the magnetoelastic
scheme of matter. There it is proven that Hadamard’s hyperbolicity condition is always reinforced
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by an initial magnetic field of any setting so that, if weak-wave fronts can propagate in the purely
elastic case, they can propagate in the magnetoelastic case as well. The exact expression for
invariant speeds for these weak waves is given for a priori polarized wave fronts and simple settings
of the initial magnetic field. This limitation to peculiar polarizations of elastic perturbances
results from the complex treatment due to the general elastic anisotropy of the body (the difficulty
is of the same order as that encountered in studying wave-like motions in crystallographic
structures). The ray or bicharacteristic theory is first developed in § 5 for a propagation through
a spatially homogeneously stressed initial state of nonlinear elastic matter in the absence of
magnetic fields. This sketch of the theory culminates with the obtaining of the general equation
governing the evolution of the four-dimensional vector amplitude of infinitesimal discontinuities
along the corresponding rays. In this state of generality the local geometry (curvature, tangential
derivatives) at the second order of the wave front intervenes in the equation. The equation is then
applied in § 6 to a brief discussion of the evolution (growth or decay) of the amplitude of a priori
polarized flat wave fronts. The problem is then specialized by considering an elastic behaviour
closely resembling that of a linear isotropic Hookean body. An analytic expression is obtained for
the break-down value of the relevant parameter (distance along the wave-front normal); there-
from caustic formation due to focusing (in the language of geometric optics) will force us to
consider shock waves in place of infinitesimal discontinuities. The critical value is entirely expressed
in terms of the initial strength of the wave front, the usual longitudinal elastic-disturbance speed,
and two parameters (which are not necessarily small in the relativistic context) that characterize
relativistic effects and the effects resulting from an initial state of high hydrostatic pressure,
respectively. The accompanying discussion clearly shows that a sufficiently strong nonlinearity in
the elastic behaviour is needed to prove that shocks may form through the steepening of com-
pressive infinitesimal discontinuities. Relativistic effects, however, do not necessarily favour this
phenomenon.

In § 7 the ray theory developed in previous sections for the purely elastic case is generalized to
the magneto-elastic case and the evolution equation for the four-vector amplitude of weak waves
along rays of the wave system is obtained for a spatially homogeneously stressed and magnetized
state ahead of the wave front. The equation thus obtained involves the geometry of the wave
front and relativistic corrections which themselves involve both the initial stresses and the initial
magnetic field as well as the nonlinearity of the elastic body (via third-order elastic coefficients).
To shed light on the phenomenon of growth or decay of the wave-front amplitude plane wave
fronts propagating through a spatially homogeneous state of high hydrostatic pressure and
intense magnetic field are carefully examined in § 8 when the elastic constitutive equation assumes
a simple plausible form. The study reveals the following behaviour of the weak-wave amplitude
and influence of the magnetic field. For elastically longitudinally polarized wave fronts (all wave
fronts are transverse from the electromagnetic viewpoint), compressive wave fronts can eventually
form shocks if the nonlinear elastic behaviour presents a marked concavity in the stress-strain
relation, but a transverse magnetic field makes this requirement less stringent compared with the
purely elastic case. Other magnetic effects appear at the relativistic order and may or may not
favour the shock-formation phenomenon depending on the orientation of the initial magnetic
field with respect to the propagation direction. For elastically transversely polarized wave fronts
it is shown that a longitudinal magnetic field may delay the formation of a transverse magneto-
elastic shock in a nonlinear elastic body in a state of high hydrostatic pressure, and this at the
non-relativistic order, whereas a purely transverse magnetic field may have the converse effect,

23-2
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192 G.A. MAUGIN

but at the relativistic order. These conclusions might encourage the study of magnetoelastic
shock waves on a relativistic basis. All necessary ingredients for such a study, including the related
Hugoniot relation, are contained in Maugin (1978¢).t

A final remark is in order about the proposed relativistic treatment. Obviously, this treatment
contains in the so-called non-relativistic limit the classical, non-relativistic, results. This is
particularly advantageous for the magneto-elastic scheme for which few results seem to be known
in the classical theory of magnetoelasticity. As for magnetohydrodynamics (cf. Lichnerowicz
1971 ; Jeffrey & Taniuti 1964), it appears here also that a relativistic treatment, by unifying the
time and space concepts and having recourse to space-time geometrical objects, is algebraically
simpler than a classical treatment. In this respect the contents of the present paper compare
favourably with those of papers by McCarthy (1968, 1969) devoted to the growth of classical
magnetoelastic waves in isotropic bodies.

2. PRELIMINARIES

We consider the same notation as in Maugin (1978a-¢). Space-time M = (V4 g) is a differ-
entiable manifold of dimension four, of continuity class C?, p > 2, equipped with a normal hyper-
bolic metric g, and hence with Lorentzian signature + 2. A local chart in M is given by {x,
o = 1,2,3,4; index 4 time-like}. For notational convenience and unless otherwise specified the
velocity of light in vacuum is set equal to one: ¢ = 1. The parameter 4* is the four-velocity such
that g,su*uf + 1 = 0. The partial and covariant derivatives with respect to {x*} in M are denoted
by 9, and V,. The gradient operator in the direction of the four-vector field A is denoted by
D, = A-V. The spatial projector P = {P?, = 64 +ufu,} is used systematically in the following de-
velopment to write down the local canonical space-time decomposition of any tensor field T
defined on M. The local spatial projection of any geometrical object T is given by (T), and
admits u as zero vector for all its indices in a local chart. Objects such as T = (T, are said to
be spatial. The transverse or spatial covariant derivative is defined by V* = (V) .

Let # = (V3,G) be the three-dimensional manifold that serves to describe the material
continuum. 4 is equipped with the local background metric G which is said to be invariant in the
sense that D, G = 0 always. Tensor fields defined on .# are said to be material. The material
body B, whose constituents are the material ‘ particles’ X of proper time 7, is an open, regular,
simply connected subset of .#. A local chart in .# is given by {XX, K = 1,2, 3}. As in Maugin
(1971) and Carter & Quintana (1972), we admit that the relativistic motion of the material body
B is described by means of a canonical differentiable projection & such that #: # = T [B] - M.
Here 4 is the open tube of M that is swept out by B. We have thus

P XK = XK(x%), 1 =7%(x), xcbx< B, (2.1)
where € is the time-like world line of X, a curve parametrized by 7 at fixed X. If Zis C!(%), then
XE =0, XK, XEy»=D XK=0 (2.2)

defines the so-called inverse motion gradient. Central to the notion of finite strain for an anisotropic
medium in a relativistic background is the material tensor € defined as being the image of the

T Preliminary results concerning the contents of §§3 and 5 ‘were given in short notes (Maugin1gy95, ¢). Heat-
conducting thermoelastic materials were recently considered by Ukeje (1980).


http://rsta.royalsocietypublishing.org/

JA

/ y

L A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

s

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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reciprocal space-time metric, g~1, by the projection & of space-time M on its quotient by the
congruence of world lines €x (1), X € B, (Maugin 1971). That ist,

¢ = 2(g) = P(PY) (2.3)

or, in component form,
CKL = g XE X} = PP XK X} = GLK, (2.4)

This material tensor is the relativistic analogue of the Piola finite-strain tensor of classical non-
linear continuum mechanics (cf. Eringen 1967, ch. I).

In the absence of dissipative processes, spin effects and electromagnetic fields, after Legendre
transformation of the energy density, we extract from Maugin (1971) the following set of field
equations for the exact finite-strain, anisotropic, adiabatic, general relativistic theory of elasticity
at any regular point in 4:

A* = kT*# (Einstein equations), (2.5)
V.(pu*) = 0 (continuity equation), (2.6)
V.(pnu*) = 0 (entropy balance), (2.7)
V;T%# = 0 (balance of energy—momentum), (2.8)

where p is the proper density of matter, 7 is the proper density of entropy, 4%/ is the Einstein tensor,
k is the gravitational constant in ad koc units and 7% is the total symmetric energy—momentum
tensor. The whole physical description of matter is contained in 7%. The following hypotheses
are considered:

(H 1) The body B is nonlinear elastic.
(H 2) It has a general anisotropic structure insofar as its mechanical properties are concerned.

Note that (H2) is less stringent than the corresponding hypothesis considered in Maugin
(1978 d), where the body was supposed to behave isotropically in its mechanical properties. The
relaxation of this hypothesis will complicate the present treatment while, all other things being
kept unchanged, allowing us better to describe physical reality. With T admitting the following
simple canonical space-time decomposition:

T8 = p(1+€) uruf — 124, (2.9)
where ¢ is the internal energy per unit of proper mass and ¢4 is the spatial symmetric stress tensor,

the constitutive equations needed are deduced on a thermodynamical basis from ¢ in accordance
with the equations (see, for example, Maugin 1978 a)

t=—2pP0[0€ or t,=—2p(0€/0FK) XT XF, (2.10)
and 0 =0é/dy >0 (inf 6 = 0), (2.11)
with c=€E(86,n). (2.12)

The function € is assumed to be at least C? on its domain of definition D = R® x R+ (since € = €7,
7 > 0; T = transpose). The parameter 6 is none other than the proper thermodynamical
temperature. By using the notation introduced above, and projecting (2.8) along # and ortho-
gonally to it, we can rewrite (2.6)—(2.8) in the following enlightening form

% =D,p+pV,u*=0 (continuity), (2.13)

N =pfD,n = 0 (isentropic evolution), (2.14)

M= = pf*yD,uf—P* Vztbr = 0 (Euler-Cauchy motion equations), (2.15)

and ¢ =pD,e—~t*fV,uy = 0 (energy equation), (2.16)

1 The notation € replaces the inconvenient C-1, used in previous work.
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194 G.A. MAUGIN

where the spatial symmetric tensor defined by
S = (1+¢€) P —p~14oh (2.17)
is called the tensorial index of the material (Maugin 1977). This last notion generalizes the notion
of thermodynamical index introduced by Lichnerowicz (1971) for relativistic hydrodynamics.
The scalar index can be defined by (tr = trace)
f=itcf. (2.18)
In particular, for a state of hydrostatic pressure p,, t*4 = — p, P*#, and (2.18) yields Lichnerowicz’s
index f, = 1+¢€+ py/p.
If we now account for the presence of electromagnetic fields and envisage a magnetoelastic
scheme for the matter under consideration, then in addition to (H1), (H2) we consider the
hypotheses:

(H3) In spite of (H2) and to simplify the following development to some extent, the body
. behaves isotropically in its magnetic properties.

(H4) Coupled effects such as pyromagnetism, piezomagnetism and magnetostriction are
ignored.

(H 5) The magnetic permeability x (a constant) of B is not very different from one.
(H6) B is a perfect conductor of electricity.

On combining the above equations with the results of Maugin (1978 a), on account of hypo-
theses (H 3)—(H 6) it is shown that an additional term

Tgf = WA (et +ueah) — ) = Ty (2.19)
must be added in the right-hand side of (2.9). ## is the (spatial) magnetic-field four-vector. The
whole set of Maxwell’s equations is contained in the covariant equation (Lichnerowicz 1g71)

V, (A —ubH ) = 0. (2.20)

While equations (2.13) and (2.14) remain unchanged, on account of the additional contribution
(2.19) equations (2.15) and (2.16) transform to

M = pf D, uf — P* N1hy — u[H =V , 5 + APV, %), — V(3] =0 (2.21)
and & = pD,fe+ (Fu?/p)] - (t0 + £f) Vipuy = 0, (2.22)
where KE = p (A AP — L HPP) — ffs (2.23)
and Job = fob + (u#?/p) P# = Jhe( Jebu, = 0). (2.24)

The former spatial symmetric tensor #y is none other than the spatial (Maxwell) magnetic stress
tensor in perfect conductors. The space-time decomposition of (2.20) yields

wubN A+ V , H* =0 (2.25)
and HB(V, u*) + (D, HE), —H*(V,uf), =0. (2.26)
The following equations are direct consequences of (2.25), (2.26) and (2.21), (2.22) (Maugin
1978¢): H(V,u*) + D, (3 ) + Wb AN, = 0 (2.27)
and p(L+e) Vb + ANV 5128 = 0. (2.28)
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For subsequent use we also note the identities
XEyr =0, Hu=0. (2.294,b)

We now have at hand all the equations needed in the study of nonlinear wave propagation in
elastically anisotropic, magnetic, perfect conductors in the general relativistic framework.

3. Tue EQUATION IN THE PURELY ELASTIC CASE

Let us denote by
S ={g,u, X5, p, 9,12, 6}, (3.1)
if it exists and is unique, the state or solution at a regular point ¥ € # of the system of equations
given in § 2. A wave front of equation
‘ W(x*) =0 (3.2)
or, in a Gaussian representation,

x* = ¢(a"; I'=1,2,3), (3.3)
that propagates through % and separates at each instant this open tube into two open regions #+
(ahead of W) and %~ (behind W), such that # = #++ %~ + W, is said to be an infinitesimal-
discontinuity front, or weak discontinuity, in the present context if, with g e C*>2(%), (u, p, 7, XX)
e C%1(4%) (i.e. continuously differentiable on # and with first-order derivatives piecewise con-
tinuous on %) the fields Vu, Vp, Vi, VXX and hence V€, suffer discontinuity jumps across W.
Using the formalism of Maugin (1976) and in agreement with Hadamard’s lemma on singular
surfaces (W is a singular surface of order one in Hadamard’s classification), we shall denote by
U= the fundamental infinitesimal-discontinuity four-vector amplitude such that

[Vsu] = N,U%, U* =[Dyue], U, =0, (3.4a,b)
where [A] = 4+ — 4=, N, =03, W/(grd, Wo, W), (3.5)

A+ eStand A~ €S- being the uniform limits of the field 4 (which is discontinuous across /) when
approaching W on its two sides respectively and the unit normal N being oriented from the
‘minus’ side to the ‘plus’ side. The fact that we assume g*N, Ny = 1 implies that N is a prior:
space-like. On account of the assumed differentiability, Einstein’s equations (2.5) do not inter-
vene in the wave propagation problem, and gravitational waves are excluded from the treatment.

Similarly to (3.4), we set [V,X5] = N, BE, BE —[DyXX], (3.6)

[Vgpl = Nﬂp> P = [Dyp], (3.7)

and [Venl = Ny7j, 7= [Dy7]. (3.8)
In agreement with Maugin (1976) we also introduce the scalar quantities N, and % by

Ny, = —u*N,, % = N,/(1+ N3} (8.9)

The latter is none other than the intrinsic speed of propagation of W, i.e. its non-dimensional speed
as measured relative to the moving matter. We wish to express the quantities BX and P in terms
of the fundamental amplitude U=. To that purpose we note from (2.29a), (2.13), (3.4) and (3.5)

that w[V , XE] + [V ,u7] XX = 0. (3.10)
Hence u [V, XX] = — XX UN,
= w [V, X§] = —NyBE = — XKU°N,, (3.11)
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196 G.A.MAUGIN
and [Dupl = v [V,pl = —p[V, u]
=—N,P =—p(N, U7), (3.12)
so that P =pN{(N,U°), BE = N3XXU°N,. (3.13)
The first of (3.11) holds good because g e C3. We thus note for further use that
IV, XE] = Ng\N,XEU°N,, V] = pN3'(N, U") N, (3.14)
and [D,XX] = — XX U°N,, [D,p] = —p(N, U). (3.15)

Finally, the unit spatial four-vector in the direction of propagation of W is given by

A= Nz/(1+N§)i, N = (Noc)u} (3.16)
Au* =0, A, Pr,=1.

On taking the jump of (2.14) and (2.15), we obtain
PON, G =0 or pOUG =0 (3.17)
and [M] = pf %D, w]— P%, PPV, 457] = O. (3.18)

With the help of (2.10), (3.9) and (3.14) it is shown that

Py PN t7] = — Qe (25 S*) [(1+ NG) /No) U, — #°%(S+) [Vl (3.19)
where Q27(4; S+) = Chars(8+) A4, (3.20)
Charo(S+) = [CErro — thaPro _ toaPhr — tho Par] (S+), (3.21)
Clen(§+) = 4 (p %I%———%XK/*XMXM/LXNV) (S9), (3.22)

= Cga)(/w) = Cpore,
and Be(54) = 2 (paaa_zé-ﬁxwxm) (84, (3.23)

with X&f = Ph2 XK We shall say that a linear operator of the set of symmetric second-order
tensors onto itself is Hookean if and only ifit is symmetric. Therefore Cy, is Hookean while C is not.
The former is the spatial tensor of second-order adiabatic elasticities with, at most, 21 independent
components in a local chart {x*}. These components are evaluated at $*. The spatial tensor C,
which accounts for the state (4(S*) of stresses ahead of the wave front, may be called the tensor of
apparent (or effective) second-order elasticities at S+. The symmetric spatial tensor %+ is the
tensor of thermoelastic coefficients. Q is the spatial Christoffel acoustic tensor of the purely thermo-
elastic case. It is clearly symmetric since in intrinsic notation

Q = ACA—{[(At) @A) +[(A-t) ® A]T +£}. (3.24)

It depends on both the state ahead of I and the direction of propagation.

Equation (3.17) imposes with N, or % # 0 that 7 = 0 across the wave front W which, if it is to
propagate at all (% # 0), is an isentropic wave front if and only if there is a non-zero transfer of mass
and energy across it. The last contribution in (8.19) can thus be discarded by virtue of (3.17).


http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y am \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

RAY THEORY'AND‘SHOCK FORMATION 197

- Upon substituting the expression (3. 19) mto (3.18) and takmg the definition of Z into account,
we obtain the wave equation in the form - Lo : : ST

Heo(art, 25 84) T, = 0, (3.25)
where oo = pifes(SH) @2 ~Qoe($%) = Hov, Horuy=0. ' (3.26)

The compatlbxhty condition for solvmg (3 25) for U,in general reads det |H ] = O whlch prov1des
a cublc in %, A strong ellipticity condition of the form

¢, Q7. > 0. (3 27) .

for any spatial unit four-vector ¢ will ensure the hyperbohcxty in Hadamard’s sense of the
system and the existence of speeds % such that |%| < 1 since ¢, f*/cp > 0 always. The condition
det H = 0 cannot in general be solved algebraxcally for Q2 because of the general amsotropy of
the medium. In particular, as in general crystal structures the polarlzatxon of wave fronts is not '
automatically longitudinal or transverse. However, if.we consider that we know a griori an
amplitude direction, i.e. the wave-front polarization, then the correspondmg speed follows from
(3.25). For instance, for a longitudinal wave front LW such that T, = U, A, and for an a prwn
transversely polarized wave front TW such that U, = U, m, with m, P*m, = 1, PeA «Mp= 0, we
immediately have the wave speeds ﬁ‘om

w: | - 2= Qs 90 s+), B )
and e e
T™W: = 0um s Spfmisy, e
respectively, with 0=, Qe (2; §4) Ag fi=Af £, x 3.30

T S 4P §)mpy fo =1 af«’”.‘p} 520

4. THE EQUATION IN PERFECTLY GONDUCTING ELASTIC BODIES

The presence of a finite magnetic field in a perfectly conductmg elasticbody greatlycomphcates
the wave propagation problem. A typical state or solution (3.1) now is symbohcally replaced by

$ = 8s+{o7}, T o (@)
where 3 satisfies Maxwell’s equations. For a weak-discontinuity front ¥/, Vo7 is d:scontmuous
across W and, similarly to (3.44,b) we set. T
‘ IV = %H* ﬁ“—unwam ST a)
at W. It proves useful to find the expression of }‘7‘ in terms of J=: applymg the operator D ‘to the
second of (2.29) and taking the jump of the resulting equation across W, we obtain

B R
Taking now the jump of (2 26) we have = , o
PR NN T 4
Then . . . He= ..(Hy u,)ue + P%, HA . N S
= (17, )u“-i—N;l[.?i"“(N*Uv) (.;f’vN*) Ua], ST (48)

24 . Vol. 302. A
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which is the desired result. Remark that in contrast with U= the four-vector H# is not purely spatial
in general. However, on taking the jump of (2.25) we also have ’
N, H= = Nyu’H,, (4.6)
which shows that Hea, =0, (4.7)
so that the infinitesimal discontinuity of the magnetic field is purely #ransverse, which, of course,
is not surprising since it is an extreme case of electromagnetic waves.
The magnetoelastic wave problem now is reduced to accounting for the jump of (2.21), i.e.
[e] = 27D ,27] — P%, PV, t57]
— KNV g HF) + H PP\ [V g HN] — PAK, [V, H 7]} = 0. (4.8)
That is, all other things being unchanged, we only have to replace f* by f## and to account for

the last contribution in (4.8) on account of (4.5). A short calculation allows one to show that this

contribution reads _
—Mix = —[QFF (4; $%) (1+ N§)/No+ Noust 7] U, (4.9)

where the magnetic contribution to the total spatial Christoffel acoustic tensor has been defined
by (cf. (3.20))

Q57 (4; §*) = CfFr(S*) 244, = QSF, (4.10)
with Clero (S+) = u[HrHPPro — PPa(H LA™ — H2PIT) —HPH *Pro] (SH). (4.11)

The latter operator is not Hookean. However, the symmetry of Qy is obvious when the latter is
written in intrinsic notation as

O =p{HA@ A+ (H ) P—(H-2)[(A@H) + (4@ H#) ]} (4.12)

* With the new contribution (4.9) taken into account, the wave equation (3.25) is replaced by
the following

Heo (a2, 2; 8+ T, = 0, (4.13)

where Ao = pf e (S+) %2——QA°“’().; §t) = Hee (4.14)

and Qe = Qo+ Q5, foo = Joo— (utoot7 [p). (4.154,b)
The latter can also be written as

for = f L3t S = () (KB o). (4.16)

The decompositions given in (4.154) and (4.16) allow one to distinguish between the purely
thermoelastic contributions and the magnetic ones. The additive character of these contributions
is emphasized. By the same token (4.11) can be rewritten as

Clerr = pflePbe 4 y(HPH 1Pro — HEH 2 Pro), (4.17)
Again, a strong ellipticity condition of the type (cf. (3.27)
caé“”cq > 0, (4.18)

will ensure the hyperbolicity in Hadamard’s sense of the system and the existence of speeds % such
that |%| < 1if fo= satisfies also an inequality of the type (4.18). Now we can prove the following
general statement.
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THEOREM. If infinitesimal-discontinuity wave fronts can propagate in the purely thermoelastic case, then
they can propagate in the magnetoelastic case also.

Indeed, assume that in the thermoelastic case
¢,Q%%c, > 0, ¢, f*7c, > 0. (4.19)
It is immediately checked in intrinsic notation that |
¢, Q3fc, = p{[H— (H-A)c]2+2(H-4) (H-c)[1—c-A]} > 0. (4.20)
and o 350, = (u/p) [H7— (#-¢)7] > 0, (4.21)

so that the magnetic field can only reinforce the conditions (4.19). The proof of the theorem
follows. In other words, as already proven in classical isotropic magnetoelasticity (Bazer &
Ericson 1974) and for one-dimensional linear wave motion in relativistic isotropic magneto-
elasticity (Maugin 1979 a), the magnetic field always reinforces Hadamard’s ellipticity condition
(4.18).

FIGURE 1.

We shall content ourselves with determining the propagation speed of a priori polarized wave
fronts. We thus assume that we know an amplitude direction, for example

U =U,m*, meu, =0, m,P+tmy=1, U, +#0. 4.22
m £ m

In general U= is neither purely longitudinal nor purely transverse. Let ¢ be the angle made by
he spatial unit four-vector m with 4, let #, and 5, be the components of 3#($+) along 4 and
onto the two-plane 7, orthogonal to 4, and let 6 be the angle made by #, with the projection of
m onto m,. The direction of latter projection is given by the unit spatial four-vector d. We
denote by index d a projection on this direction (cf. figure 1). We have thus

U = Up(cospA* +singd®), A, P*d, = 0. (4.23)
24-2
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200 G.A.MAUGIN

Let %,, be the positive intrinsic speed of W corresponding to the amplitude T, if the latter
is indeed an allowed solution of (4.13). On taking the inner product of (4.13) with U, and con-
sidering an amplitude as given by (4.23), we obtain

FIN cosp + H,sin?g + 2131(", asSingpcosg = 0 (4.24)
with A =2 A2, Ay =dA<d, B, ,=H7d, (4.25)
1, = o U~ Qu = A1+ 220,0) V5~ 1@+ (Qu) ], (4.26)
Ay = pfy 2% -0, = pfall+ o5 o+, (1 —cos?0)] Un, —[Qa+ (Qap)al, (4.27)
ﬁ(u,d) = Pﬁu,d) U~ @(n,d)a (4.28)
where A0 = (pf) 7 m( A=~ HF) = (pf..)“‘/wfi,} (4.29)
pfa = PRl + (o)™ (A2 = HY)).
But WA —HG) = p(AF+ AL~ HY)
= p[H% + A% (1 —cos?6)], (4.30)
so that on defining Ay o = (pfa) 1w, } (4.31)
A, 0= (pfa) 7 pAL (1~ cos? ),

we readily obtain the second expression given in (4.27). From (4.21), (4.22) and the second of
4.23), we have
( ) (OM)n = /‘”i) (Qm)g = ,u%ﬁ (4.32)

and ﬂu,d) = —p~ o +pHH5], Qoo = Q(Il,d)_/‘%%’ (4.33)
On account of (4.21) through (4.33), (4.24) then yields the following solution for %2 :
Un = {(@Q+pH1) cos® ¢ + (Qq + p#}) sin? g + 2sin p cos [ @y, @ — 1, 5]}
=p{filt+ 27, plcosP @ +fy[ 1 +/% o+ 907, (1 —cos?6)] sin2g
—2p~'sing cos [l o +pt HGl}.  (4.34)

By the same token, on account of (4.23) and (4.5), the associated infinitesimal discontinuity in the
magnetic field, which we denote by H%, is given by (U, # 0)

H U, = (H, cos g+, sing) u + U 1 (H% cos p — H, d*sin ), (4.35)

where % is the positive value given by (4.34).

Although they clearly emphasize the purely thermoelastic contributions (indicated with an
overbar) and the magnetic contributions (via # and the various non-dimensional numbers
/..y, which play the role of Alfvén numbers in the relativistic { ramework), the expressions (4.34)
and (4.35) are far too general to be of any direct practical interest. To get some idea about the
pertinence of these results consider two special cases of polarization:

(1) Elastically longitudinal wave front (the wave fronts are always transverse from the magnetic
viewpoint). In this case m* = A%, ¢ = 0, so that (4.34) and (4.35) reduce to

Ui = (Qn +/“#2¢)/PJ?;|[1 +’%%_L, ||)] (4.36)
and He/U = Hux + U . (4.37)

For an orthogonal setting of the magnetic field #'*(S+), #'* = #%, (4.36) does not simplify further
and (4.37) shows that H= is spatial and parallel to #* in the two-plane 7,. For a longitudinal
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setiing of the magnetic field, #, =0, #* = i, A%, (4.36) reduces to the purely elastic value
obtained in Maugin (19794), but H# is purely time-like and independent of the properties of
propagation (i.e. it does not depend on the wave speed).

(ii) Elastically transverse wave fronts. In this case m* = d%, ¢ = 1/2, so that (4.34) and (4.35)

reduce to _
U = (Qu+pD) [pfalt + 7%, 0+, o(1~cos0)] (4.38)

and HY)U = #yux~ UTIH, d*. (4.39)
For a purely orthogonal setting of the magnetic field, (4.38) and (4.39) reduce to
U = Qu/pfa[1 + 2, (1 —cos?6)], H*/U = H# u*cos. (4.404, b)

Equation (4.404) further reduces to the purely elastic value obtained in Maugin (1979 b) when-
ever U is parallel to #° in 7, while H=* is always purely time-like and does not depend on the
propagation speed, but it still depends on the angle made by the polarization vector and the
direction of the initial magnetic field. In particular, H* vanishes whenever U is orthogonal to
the direction of the initial magnetic field. For a purely longitudinal setting of the initial magnetic
field, (4.38) and (4.39) reduce to

UL = (Qu+pD) [pfald + 500, 0), H/U =~ U d*#,. (4.41a,0)

Hence H=is antiparallel with the elastic perturbation in this case. Note that the first of (4.414) is
a generalization of the concept of an Alfvén wave front considered in relativistic magnetohydro-
dynamics by Lichnerowicz (1971). Indeed, this Alfvén speed is given by (Lichnerowicz 1971,

equation (12.6)) ) , 7 ,
Yy = Y pf (14570, 2 = 1Y, (+.42)

where fis the scalar index of the fluid (for a fluid §, = 0 and 7, reduces to f = 1 +¢+p/p where p
is the pressure.

We finally note that in (4.36), (4.38) and (4.414) the magnetic field provides an essentially
classical contribution to the numerator which increases (stiffens) the value of the corresponding
propagation speed as compared with that of the purely elastic case, whereas it contributes to the
denominator, via Alfvén numbers, in relativistic corrections, and decreases the value of the
corresponding propagation speed as compared with that of the purely elastic case. We shall later
examine the extent to which the presence of a strong initial magnetic field does or does not
favour the formation of shock fronts from weak magnetoelastic waves. To shed light on this
difficult problem we first examine the purely elastic case.

5. RAY THEORY IN THE PURELY ELASTIC CASE

To avoid increasing unnecessarily the already cumbersome nature of the subsequent com-
putations we shall limit ourselves to the case of a propagation throughout a state $* that corre-
sponds to spatially homogencously strained and stressed bodies. That is

(Vptm9)+ = 0, (V,XE)r =0, (V,KE)*+ = 0’} (5.1)

(Vgp)t =0, (Vgm)*t =0, (V,0)*=0.

If we note that in general

[4B] = [4] B+ +4*[B] - [4][B] (5.2)
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202 G.A. MAUGIN

if A and B suffer discontinuity jumps across I¥, thenif 4 = VaeSand B = Vb€, equations (5.1)
imply that (5.2) reduces to [(Va) (V8)] = —[Va] [V5]. (5.3)

This relation will be of constant use in the following development. :

In contradistinction with the qualitative method used in Maugin (1977), we consider the
following direct method to construct relatively easily the equation of rays (or bicharacteristics)
associated with the system (2.13)—(2.16) of balance laws and the wave equation (3.25). We claim
that the ray equation or, equivalently, the equation that governs the evolution of the amplitude
U along the rays associated with (3.25) is none other than the equation.

R, U; §*,GY) = [9%] = 0, (5.4)

where G¥ denotes the local geometry of W at the second order (i.e. it involves the curvature of W
and tangential derivatives on ). Indeed, on account of (2.13) and (2.16), it is immediately

found that @ = (D, M),
= pf ¥ D} us—pf**(V, u?) Dyuy+ PA(t#V  u,) Dyu,
—P*(D, t78) Dy u, — (V, u?) t*#D,uz~ P‘fﬁDu(P{?.y P,V 1m), (5.5)

where we accounted for the fact that (D, P*#), = 0 and D% 4 = D, (D, 4). Furthermore, noting

h
that u, Vatht = 9V, 0, wyu, Vytth =0, uu,D,tre =0, (5.6)

by virtue of the spatial nature of #, we evaluate the last term in (5.5) as
Pa.‘ﬂ Du(Pﬂy PA/L V:\ tﬂy) = Po.t'y P,\y(Du VA tlt')’) - tlm(v/\ uﬂ) Du ut
+ (D, ##) Dyuy— 27 (V, u,) D, u. (5.7)
On substituting the result (5.7) into (5.5), noting that #* = [%%], using the property (5.3) and
rearranging indices, we arrive at the equation
R = pf g IDuw) +{(pf Y*P+F — t7Pl — 2PYP) [V, u,]
+ 2[IDu taﬁﬂl} [[Duuﬂ]] - Pa.c'y Pkﬂ HDu(v/\ tﬁ)’)B = 0’ (58)
where the quantities outside the open square brackets are to be evaluated at S+,
The evaluation of the second term in (5.8) involves no difficulties. That of the first and third
terms requires the evaluation of the value of jump discontinuities in second-order derivatives of

the state S. For that purpose we shall rely heavily on the results of Maugin (1976). The following
notation and definitions are needed. In terms of the Gaussian representation (3.3) of W we set

¢j‘.’. = a¢¢/aa1"’ ¢II{ = lyrdgt\jtgégy } (5 9)
Yra = gaﬂ¢%¢g’ b[’A == ¢# ¢;yl V'yN/v .
where y is the local metric on W and b is its second fundamental form. We further set
* = [Dju], 2 =D,+N,Dy, Dy=N2V,, D{4=DyDy4), (5.10)

where Zis the invariant derivative following the motion of W along its normal in M. Then, in
accordance with theorem 4.7 and corollary 4.12 in Maugin (1976), across W we have

[D2u*] = %*N}—2N, 2 U= — U@ N,, (5.11)
and [VaV, &) = UPN\N, + (N, ¢ + N, ¢%) U\ — bry ph 4 U, (5.12)
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where a vertical bar denotes covariant differentiation with respect to {a"}. Clearly, in view of the
last contribution in (5.8) we shall also need the jump of second-order derivatives of 9, p and XX.
For the first of these, since across W

7] =0, [Vanl =0, [Dy7]=0, (5°13)
and with A~ = [D% 7], an equation of the type of (5.12) for ¢ reduces to
[V, Vanl = A" N, N,. (5.14)
But, on considering the equation [D29] = 0 which follows from (2.14), we find that
[D2y] = — AV, 7] [V, 7] +w [V, V, ] = 0 (5.15)

on account of (5.3). Taking into account (5.13) and (5.14) we obtain that A~ = 0 if and only if
N, or % differs from zero. Hence [V, V,7] = 0 in the following development. On taking the
covariant derivative V4 of (2.13) we obtain

w(VVap) + (Vo) (Vap) +(Vpp) (V,u07) +p(V,V,w7) = 0.
Taking the jump of this equation across W and taking into account (5.3) and (3.14) we have
W[V, V,pl = 2p(N, U?)2 Ng'N,—p[V, ¥, u7]. (5.16)
Taking twice the covariant derivative of (2.294) we obtain
(V,Vaug) XEb 4+ (Vyug) (V, XEB) 4+ (V ,uf) (VA XEF) +uy(V,V, XEF) = 0.
Taking the jump of this equation across W and taking into account (5.3) and (2.13), we have
uf[V,V, XE] = 2XEU?(UPNg) Ng*Ny N, — XKV, V, uf]. (5.17)
Since ge C3(#) we also note that ‘
w[V, V) XK1 = w[V ,V, XK. (5.18)

It is fortunate that only the discontinuities (5.11), (5.12), (5.16) and (5.18), which are entirely
expressible in terms of %, U* and U?, are needed to arrive at the form taken explicitly by (5.8).
We shall give only a few intermediary steps in this lengthy, but not essentially difficult, calcu-

lation. In particular, we have _ _
[D, ], = Ch*oeN, U,, (5.19)

so that on account of (3.14), (5.11) and (5.19) equation (5.8) first yields
20N, f#D U, —pN3 f*4U y+ pf # U, DN,
+NyU,U, Nj (pf boPae — thopac — taopef 4 9Ceach)  of* = 0,  (5.20)

with &/* = P*, P*,[D,V,t#] = P*, P uf[V ,V, t#]. (5.21)
On account of (5.13) and the fact that [V, V,7] = 0, we find that
A = — No1U, U, Nj N Ny@haouet 4 o o, (5.22)

where we have set
Gruonst(Sr) = Gt (S+) + 2[(CE0Po + CFHPI 4 Cffe#Pod 4 JCforePr)
— (to2POPAr 4 toBPrOPer 4 t7ePFOPaR) oy,  (5.23)
%ﬁ}aumeo ( S+) = %iga) (op) (e0) — gﬁaﬂaw = (giga;tﬂa

0%
~8 (p AN XKﬂXLaXMvXNnXPeXW)M (5.24)
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204 G.A. MAUGIN
and A= = P% PA o= ur[V, V, p] 197 — 4p(06 OGKL) XLV, V, XEI]
— 4p(0% [OFKL GMN) XKBX Lrur[V, V, XM] X7}, (5.25)

%1; is the spatial tensor of third-order adiabatic elasticities. Note, by the way, that whereas the
wave-propagation condition and a static perturbation problem, such as the one treated in
Maugin (1978g), involve only second-order elasticities, the ray theory involves third-order
elasticities, hence the convexity of the stress—strain relation. On account of (5.16)—(5.18) and
(5.12), it is shown that (5.25) yields

= —Cheou[2NGINE Nt N*eU, U, + b, ¢85 T,
— (Np i+ N, 8F) Upr — %, N Ny, (5.26)
where C is the tensor defined in components by equation (3.21).
In gathering the expressions (5.22) and (5.26) in (5.20) it is convenient to rearrange the term

quadratic in U so as to account for the wave equation (3.25). To that purpose we notice that the
resulting quadratic term can be written in the following form

Z*(U?) = N3U, U[ — (1 + N3) Hb7 P + N} Rbo%e N Ny@haonet], (5.27)
where we have set Rboes — thoPac | oo Pef _ g(ecach (5.28)
and GPhaoped — %ﬂa«r,uw — CBrodpae, (5.29)

The last spatial tensorial quantity is the tensor of apparent (or effective) adiabatic elastic moduli of
the third order. Equation (5.27) further simplifies on account of (3.25). Making use of the
relations (3.9) and (3.16), which yield

Ny=/(1-%}, (1+ N3} = (1-2)4, (5.30)

we finally transform (5.20) in the desired form:

2U0f*4)is1 DU + PE(U% S+, GY) U, + P (% §) U, U, + P (U §+) Upr
= w(1 -2t H=q,, (5.31)

where P = UL — U2 (pf DN, — CPoro ¢4 $Lbar), (5.32)
zzzzzse — (1 _ %2)‘} (?ﬂa«r,ueBAﬂ A,u AO + %2gﬁo'aeAﬂ), (5.33)
& = UCPr7 (As 05+ 2, 95), (5.34)

and  Ghaoncd = Gherued 4 9(Choer PO 4 Cgrer PP + CErocPrb 4 CfrolPer + ChaornPed)
—[2(to#P=0Per 4 toePROPr  fox Ped Pub 4 Chuod Pae  Ch2ocPrb].  (5.35)

Another way of writing the ray equation (5.31) is obtained by taking its inner product with U,,
from which on account of (3.25) follows the result

202U, f2Ty) + U, 250, + U, 2T, U,+ U, Pl = 0, (5.36)

where %% no longer intervenes.

Clearly, an equation such as (5.31) or (5.36) cannot be of great use in the general case. How-
ever, purely relativistic effects already appear in the formulation (5.31) in the form of factors
involving 1— %2, the presence of f* in place of P*#, and the relativistic nature of the term
involving the tensor £ in (5.33). If the introduction of this contribution is traced back in the
analysis, it is immediately seen that the term arises from inertial effects contained in the tensorial
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index f. Equation (5.31) appears to be a relativistic generalization of a result due to Green (1967)
in classical elasticity (see also the review by McCarthy (1975)). Great simplifications occur in
(5.31) and (5.36) under the following conditions. Definitions of 2 that are equivalent to that
given in (5.10) are (cf. Maugin 1976, equations (2.162) and (3.4))
9 = uanf = dV’ (5.37)
where Df = (g% = N*NF)Vy, dpf = firy™u,é3, (5.38)
so that D7 is the tangential derivative on W. Then if the wave front is flat and propagates through
a homogeneously strained and stressed state St, we have 2N, = 0, b, = 0, and the second and
fourth terms in both (5.31) and (5.36) vanish identically, so that we are left with
20%*(U, f#2Uy) + U, 73U, U, = 0. (5.39)
We shall exploit the ray equation only in these restricted conditions for which, symbolically,
2U = bU>. (5.40)

The amplitude of the wave front will remain constant if and only if 4 vanishes identically.

6. THE GROWTH OF 4 PRIORI POLARIZED FLAT ELASTIC WAVE FRONTS

Let U, be in the spatial direction of the unit four-vector d,, so that U, = U;d,, d,u* = 0,
Ptd,ds = 1. Furthermore, consider plane wave fronts and define a scalar parameter with the
dimension of a length, o (the distance along the spatial normal to W) such that o = %; 75, where
Ty 1s the proper time in following W, i.e. 2 = 0/0r. Then, with U, # 0, (5.39) reduces to

dU;/do—=b, U3 = 0, (6.1)
where we have set by = —(d, P d, d,) [ 2ptf; U, (6.2)
if %, is the positive wave speed provided by (3.25), i.e. (cf. (3.28)-(3.29))
~ Cen -
23 =UOH ) Q= 0,050 dyy fo = dfHS)dy (63)

p*fa(d; S$7)’

More precisely, on account of (5.33) and setting

by = Ca/20%3, T3 = Qu/p* (6.4)
and Gy =d,d, dGrorIN ) Ny Ry = d,d,d RN, (6.5)
we can write by = bE(f)) (1 =21+ U2 R/E,)]. (6.6)

Let UY be the initial value of the amplitude U,. Then (6.1) integrates immediately to give the
luti
roumen Uy(o) = Uslt = (o/o9)], a6 = (Uhba) ™ (6.7)

The wave front retains its strength (constant amplitude and same sign) if and only if b; = 0, that
isif 4% = O or ?ji = 0. If b} # 0, several cases must be considered according to whether the wave
front is compressive or expansive and whether the effective third-order elasticity coefficient %, is
positive or negative.

Equations (6.1) and (6.7) can be rewritten as

d|Ug|/doFbq|Ugl® = 0, |Us(0)| = U3[1F (0/00)] 7 oo = (|Ua] ba) 7, (6.8)

25 Vol. g02. A
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206 G.A.MAUGIN

the minus sign corresponding to an expansive wave front (U; > 0) and the plus sign to a com-
pressive wave front (U, < 0). For an expansive wave front |U;| becomes unbounded when o = o,
with o, > 0, hence if b; > 0, or, essentially, €, > 0; this means a convex apparent stress—strain
curve at S*. A strong discontinuity solution of the shock type ([u*] # 0, [#] > 0 across W) must be
envisaged from then on. Otherwise |Uy;| decays as the wave front W traverses the material, and
ultimately the infinitesimal discontinuity is smoothed out. For a compressive wave front (U; < 0),
|U,| becomes unbounded when o = — o, with o, < 0, hence if b, < 0 or, essentially, €; < 0-
this gives a concave apparent stress—strain curve at S*. Otherwise |U;| decays to zero as the wave
front travels throughout the material.

Let us now consider the influence of relativistic effects. These effects are clearly shown in (6.6).
Since o, behaves like b3 ! according to the last of (6.8), we see that the factor /f;, which represents
a relativistic inertial effect, decreases the critical value of |oy|; the factor (1 —#2)%, a relativistic
effect that involves only the behaviour of the elastic body at the second order, slightly increases
this value; whereas the last factor within brackets in (6.6) will decrease this value if %, and €
have the same sign, and will increase it if %, and %, have opposite signs. In conclusion we see
that the last effect, a combined relativity-material contribution, will favour the strengthening of
a compressive wave front if %, < 0 and that of an expansive wave front if Z; > 0. We shall
illustrate in the remainder of this section the role played by both the initial state S+ and the
nonlinearity of the material, by considering a plausible simple elastic model.

Propagation in a quasi-Hookean body

If the elastic body whose general constitutive equations are given by (2.10) is isotropic, then
e depends on € only through the three elementary invariants J;, = tr €%, k£ = 1, 2, 3, of the material

tensor €. On setting 8 = 08/0L, &y = 0% /0L, 0L, = &,
after a short computation we have
0% JOCKLOGMN = &1 0k, O + 285 (S Oy + Opz. Oxey) +251080n Okt
+383(0xpr Gy + Cunr Orn) + 2810 0mn Gt
+ 480,61 Grrn + 3813(Ca1o € n O + Cxp € L0 w)
+6855(Ci “ConCrr + CunCrr€L)
+ 98356k pE L 16 10CH° - (6.9)
Let us assume for example that |€| = (tr €2)? < 1. Then with (3.22) we can set
Comn(5*) = A(S¥) PFe(S*) Pon(S)
+A(ST) [PP7(S¥) Por(S¥) + PPH(ST) P2o(SH)] + O(|€(S1)]), (6.10)
with A(SH) = 4p+Ey,, A(SY) = 8p+E,, (6.11)
where &,; and &, are evaluated at € = 0. Equation (6.10) represents the closest approximation

to the Hookean elasticity tensor of an isotropic linear elastic body. The parameters A and 7 are
analogous to Lamé’s coefficients. Consistently with (6.10), we shall take

Flhaored(S+) = 0. (6.12)
Furthermore, we shall assume that S* corresponds to a homogeneous state of high hydrostatic

pressure p, such that 1(S+) = — po P2A(S+). (6.13)
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The model provided by (6.10), (6.12) and (6.13) is the simplest one that allows us to illustrate the
effects of a simple, but physically interesting, initial state. In particular, (6.12) means that there
are no adiabatic elasticities of the third order, and for one-dimensional states, the stress—strain
relationship is linear. The strengthening of the wave front will therefore involve only the scalars A
and Z and the pressure p,. For further use we shall also introduce the following parameters:

& = A+20)/pt, & =F/p*, Cr= Ci/C%,}

o L (6.14)
€, = bo/PTek, €r = po/pTck = 3¢, L,

of which the first two are the classical longitudinal and transverse elastic-disturbance speeds, and
€, OF €3 is a non-dimensional parameter that accounts for the initial state .

Before proceeding to the application of the scheme (6.10)—(6.13) to the growth of plane waves,
we must notice that the isotropic hypothesis contained in (6.10) is somewhat in contradiction with
introductory remarks. The results that follow will apply practically only if the elastic body of
interest is weakly elastically anisotropic. By this we mean the following. If, for instance, the external
crust of dense stars has a cubic structure then, theoretically, instead of (6.10), Cy will have a
representation of the form

C%“””(S’L) = §(011— 1) PPt + 1o PP2PoF 4 ¢yy (PPO P21  PhrP), (6.15)

where PFaor is a spatial completely symmetric tensor that equals one if all indices are equal and
zero otherwise, ¢,;, ¢;, and ¢,y are three elastic moduli and £ is the non-dimensional parameter

defined by £ = 1—20,/(cxy— c13) (6.16)

in crystallography (see, for example, Strauss 1968). The representation (6.15) can reasonably be
replaced by the principal part of the expression (6.10) for practical purposes if and only if § is very
small, in which case the cubic structure is said to be weakly elastically anisotropic. We shall
assume that this is the case of the relativistic dense matter of interest.

With (6.10) accepted as such the possible wave modes that are solutions of (3.25) are necessarily
either longitudinal or transverse, and the results (3.28), (3.29) immediately apply with

Ui = &, (143¢,) fo1, UL = ci(1+e,8ur) [0 (6.17)
where Jo=Ji=JL=1+6e(S") =po/pt = 1+€(S*)/*+€, BL, (6.18)

in which we have set gy, = ¢;, /¢, used the definitions (6.14), and written the last of (6.18) in
dimensional units. Since the body practically behaves isotropically, the universal relation (5.26)
established in Maugin (1978 d) holds good a priori, so that the speed of sound in the state S+, defined
in agreement with Lichnerowicz, is given by

a*(S%) = UP—5U% = (ag+a}) /! (6.19)
with aj = By/pt, af =5py/3p+ = je,ch, B, = (31 +2f), (6.20)

where B, is the so-called bulk modulus of the material, a, is the speed of sound (without relativ-
istic corrections), in the absence of initial pressure, and a, happens to have the same definition
as that of the frozen sound speed for diatomic molecules (as it occurs in the study of the influence of
relaxation effects on shocks in gases of diatomic molecules (cf. Whitham 1974, p. 359).

The remaining parameters needed for the study of the growth of waves are obtained by
replacing the index d either by || or by L in the previously established equations, hence by

25-2
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replacing d, successively by A, and m, (with m,P*A, =0, m,P*ms = 1) in the defining
equations. It is thus found that
€, = 8ptct(1+39,) >0, €, = 0,} (6.21)
R, =—2p*ct(1+4e,) <0, #, =0.
It immediately follows that &, = 0 and transverse infinitesimal discontinuities travel with constant
amplitude throughout S*, whereas for longitudinal infinitesimal discontinuities of amplitude U (6.1)
holds good with *p, — prrh(s — a1 -4 (1+46,) /(1 +8¢,)T) (6.22)
- (Zu — 4(1+3€p)
20+ (143¢,)% ¢, (1+3¢,)2

and ' b* (6.23)
Since €, and #, have opposite signs, the last factor in (6.22) will not favour the steepening of com-
pressive wave fronts. This allows us to make a brief digression on nonlinear elastic bodies. Equation
(6.12) essentially means that the body behaves linearly. However, if we retain the simple rep-
resentation (6.10) for second-order elasticities, and (6.13) for the initial state, but we now consider
€y, # 0, then in the same circumstances %, retains its negative value, and the last contribution in
the general equation (6.6) will indeed favour the steepening or strengthening of the wave front if
and onlyif (€y), is ‘ sufficiently negative’ (hence a stress—strain curve for one-dimensional motions
in the A-direction that is markedly concave) so that €, and %, acquire the same, negative, sign. This
cccursifand onlyil (@), < 0, |(@ul > 8% (1 +86,). (6.244,0)
Then in this nonlinear medium subjected to an initial state of homogeneous high hydrostatic
pressure, compressive waves will ultimately form shocks via the phenomenon of formation of
caustics due to focusing. Returning to the case represented by (6.22) we find that the exact
critical value of o is given by

oy = Go(cr,, | U5 o)

__¢ (1+3¢,)1/3 _BR(1+36,) (1+4¢,))
= TOT (17 m—ﬂﬁ(mep)]%{ﬁ’ ) - (629
with Sfo=1+e/E+e, B, P =cL/c, €, =po/ptei. (6.26)

Both relativistic effects (via ¢/¢? and ) and the effects due to p, (via ¢,) are illustrated. The
obtaining of the quantitative result (6.25) concludes the present section. For a weakly relativistic
motion and if the initial state of hydrostatic pressure is sufficiently low, both parameters f;, and
€, can be treated as infinitesimally small quantities, and the asymptotic behaviour of o, follows
immediately from (6.25).

7. RAY THEORY IN THE MAGNETOELASTIGC CASE

In looking for the equation that governs the variations in the amplitude of the wave solution of
(4.13), we follow the steps in the derivation given in §5, so we show here only how to obtain
additional contributions. The general ray equation will be given by

'@a(%z, ﬁ, S+’ G;’V) = [[ga]]_l_ = Ilgi]] =0 (7‘1)
with g2 = (D, M), | (7.2)
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where it* = 0 is the equation (2.21). In the calculation of (7.2) we particularly need the
expression p(D, f*#),. With (D, P*f) | = 0 and (2.13) we first have
p(D, fo#) = pP*D,[1 +e+ (uH?/p)] +p~D, p) 1 — (D, 1) |
= [pDy (6 +p%/p) + 3D, uH? + Jud*(V, ur)] P4 — (V, 7)1 — (D, 49) .. (1.3)

Taking account now of (2.22) and (2.27), we can evaluate the first two contributions in the first
term in (7.3) to arrive at

p(D, feb), = (tm +2047) (Viuuy) — (V, w?) 126 — (D, %4) . (7.4)
On collecting the partial results already obtained, in lieu of (5.5) we have
G2 = p2y Dbu? — ([pJ 9PV — 2Pw8(173 +130) + 15AP7S — 159PAY) (V, 05) + 2(D,,148) .} (D, )
—P% P}, D,(Vyt#) + % =0, (1.5)
where Gr = —pD[HNy HP+ HE(N g %) | — A, V2H7]) . (7.6)
Using the fact that
Ps(D,PP) = ur(D,u*), (Vpot))ur = —HVgu,, (1.7)

we find that
gﬁl = _:“[(Du'}fa)_L (Vﬂ'}fﬂ) +‘%aDu(Vﬂ‘%ﬂ) + (Du'}fﬂ) (Vﬂ%'\) Py

+H D (V) Py — (D ) (V=) — P2, D, (V) H#7)

—HPHN(Viuy) (Dyu) — #, (D, #7) (Dyu)]. (7.8)
The contributionsin D,(V, ##7) and D, (V,5#*) which appear in (7.5) on account of (7.8) show
that we shall have to deal with second-order derivatives of the fields and the associated jumps

across W. With Reference to § 5 for the terms that involve {7, it remains to evaluate the fields
D,(V,5#F) and [D,(V,5£7)],. This is achieved as follows. From (2.25) and (2.295), we have

Dy (Vo %) = =D, [u(uV, H#3)] = D (uH7V ,up)

= (Dyup) (D, H#F) + 54, Djub. (7.9)

On taking the covariant derivative V, of (2.26) and accounting for the fact that
VD, H#7) = urV, V, H7 + (Vyur) (V, H7) (7.10)
and VAV, #7 =V, V,H#Y+ R, , H7, (7.11)

where R?, , is the Riemann-Christoffel curvature tensor based on g, we obtain
P D, (Vr#7) = P2 utRY ), 7 — (Vyuk) (V,57) P2, — (V) HF) (V,u7)
+(Vadl®) (Vaug) — (Dy ) u, (Vauf) = HF(V, V, u%)
+H4V,V,u,) PP, (7.12)
By the same token we have the fully spatial result
[Du(Vadt?)] L = Py PEurRE g, 0 — (Viuk) (V, H7) P7y— (V3 #7) | (V,u%)
+(Va %) (Vau?) — (D %) u,(Vau?) | — H7(V, V,u%)
+#*(VaV,uf) PYy. (7.13)
On account of the results (7.9)—(7.13) all second-order derivatives of 3# can be eliminated from

(7.8) by terms of second-order derivatives of u. Generalizing the assumption made in § 5, we
25-3
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210 G.A. MAUGIN

consider that the state §* ahead of I is now that of a spatially homogeneously strained, stressed
and magnetized body. In addition to (5.1) we therefore have

(Vpto)t =0, (7.14)

and use can be made of the simplified jump relation (5.3). We can deduce from (4.5) the following
useful results |

Ny HP = NyuPHy = — Ny (H#5Up), (7.15)
HPHy = — (A#7U,)2 + N[ A3 (N3 U7)2+ (#7N3)2 U0, — 2(N5U7) (4N ;) (#5Ty)]
(7.16)
and H'#, = NG\[H*(N;;Ur) — (HrNy) (o, U7)]. (7.17)
On taking the jump of (7.5), in lieu of (5.8) we obtain
R« = pf,[D2ub] +{[ pf *6PY* — 2Ph (170 + 13) + 1“6 PV — (3 PEY] [V, u,]
+2[D, [} [Dyug] — P%, P1,[D,(V, t)] +[%5] = 0. (7.18)

The first two contributions in this equation can be evaluated on account of the expressions given
in (5.11), (3.4) and (5.19). The penultimate contribution in (7.18) has already been evaluated
in the purely elastic case. The last contribution, after a lengthy calculation that we shall not
reproduce, gives

[95] = — C{¢ " [%, Nj Ny + (Np ¢t + N, ¢5) Ui — bra 95620,
_ A NEU, — 2N, 2T, - U, 9N,]
+ N, U, U, Ny o> + Ng\T, U, Njy N+ Ny @haoret, (7.19)

where Cy; is none other than the spatial tensor defined by (4.17) and we have set (at $+)

R = y(HIHT P — A PP + HIH < Pob — pf iy Pes) (7.20)
and Ghaonsd — (AT AP LPBP _ A nPeTPIO - PAb AT Pub — pf b PeaP D). (7.21)

On carrying the previously obtained partial results into (7.18), on account of the wave equation
(4.13) we get

(1+ N3) HobUy— 20f * N, DU, — (pf 2 DNy — Caorb 1. §5 ¢4) T, — CPao (N 8% + N, §5) U
+N\U,U, Nj{N}: Ny (@ Paoued y @haoned 4 gChaoy Ped)

+ N3[Rhooe — 2Ceach — pfaoPes 4 2Pac(feh 4 () — o Pef 4 te2PoB]} = 0, (7.22)

where we have used the definitions (4.15) and (5.23), and set
Chasn = Caon 4. Claor (7.23)
so that, indeed, Q= é“ﬁ”ﬂAﬂ A, (7.24)

Equation (7.22) can be transformed further as follows. First we notice that
—pf @ N3+ Carr® NENj = — (14 N3) B — p#*#7 N3, (7.25)
so that the contribution quadratic in U in (7.22) can be rewritten as

N3O, U, Nj(Nk Ng@raoue  N3Jphoae), (7.26)
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on account of the wave equation (4.13) if we set

@haoped —. @Bacped +Ghaonet, (7.27)
Rboas = Jppoac 4 Gpfioac, (7.28)
with Ghaoped — GPaoucd 4 QCPaon Ped _ Capol Pep (7.29)
@laoned — @paoisd _ (a0 Pef (7.30)
Rpoac = facPof | QPactfic _ fao Phe _ 9Ceach (7.31)

and g{{aae = gglmzs — uHeH P 4 2 Paatﬁ
= u[(2/1) Pootfs — (p/ ) 1 Pee — A=A PPos 4 HOH Pob). (7.32)

Then equation (7.22) transforms in the same form as (5.31), i.e.
2% (of *F) 51y DUy + PG (U2 S+, GY) U, + P (% $*) U, U, + Pgh(U% S*) Uy

= w(1— )} Aoy, (7.33)
but with tensorial coefficients given by

P = U(1 = W)} (of DNy — OFrog §1b,r), (7.34)
Pige = — (1= U2} (GPaonsody A, Ay + URbo22) ), (7.85)
and Pih = UCH 1o (N, s+ A, B5). (7.36)

The alteration brought in by the magnetic field, as compared with the purely elastic case of § 5,
materializes in the fact that all tensors f, C, € and £ have a magnetic contribution as is clear from
(4.15), (7.28), (7.27) and (7.28). We shall study the influence of the initial magnetic field in § 8 for
a special case. For the time being, assuming as in § 5 that the wave front W is flat and the state
ahead of W is spatially homogeneous, instead of (7.33) we have (cf. (5.39))

20%*(U, f+2U,) + U, 2%:U, U, = 0, (7.37)
so that for a wave front whose elastic-disturbance polarization is along the direction of unit
spatial vector m®, and o = %, T, being the distance along the spatial normal to W, we have

dU, [do—b,U% =0 (7.38)
with by = —m, PEemyme2pH o U2, (fr = Mo f*Pmy), (7.39)

and %, the positive wave speed provided by (4.34).

8. THE FORMATION OF MAGNETOELASTIC SHOCKS

Given the complexity of the problem we consider separately two special cases.

(a) Elastically longitudinal wave fronts

In this case m* = A2, the invariant speed of the wave front is given by (4.36), while the corre-
sponding magnetic-field discontinuity is given by (4.37) irrespective of the setting of the initial
magnetic field. By the same token we have

S fo = XS0 = (FIL+ 0] (8.1)
We also obtain by = =P/ 20™f, U (8.2)
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212 G.A. MAUGIN
and Py == (1= [+ U R/2)], (8:3)
while on account of (7.27)—(7.32)
?n = (Zu + (G 3‘?“ = '@H + () (8.4)
where the subscript || indicates the full projection in the 4-direction. It is found that
@" = (%E) I + S(CE)II - 9tll’ (%M)II = /L(%ﬁ - 2”3)’ (8'5)
and “%TII =14 —-2C—,'", (Por)y = —p(25°2 = 347) = (€n)1s (8.6)
on account of (7.30), (7.21) and (4.11). Thus
g?Il = (%E)H +8(CE)II _gtll +ﬂ(%ﬁ-—2#i) (8'7)
and '@u = 84, —2(Cg), +p(H} - 247). (8.8)

We consider the special case where (6.10), (6.12) and (6.13) hold true. The model thus envisaged
is the simplest one that allows us to show the effects due to an initial state of high hydrostatic
pressure g, and those due to an arbitrarily oriented initial magnetic field. It also is the closest
approximation to the classical Hookean elasticity of isotropic linear elastic bodies. We im-

mediately have .
C\ = 8(A+27) +9py +u (AT —25£7) (8.9)

and R, = —[8py+2(A +27) + p(22 — H?)). (8.10)
We shall use the definitions (6.14) as well as the non-dimensional parameters
eur = (W/ped)*,  enr = (w1 /pt)t, (8.11)

which measure, respectively, the influence of the longitudinal and transverse components of the
magnetic field. Those parameters are nof supposed to be infinitesimally small. Then (4.36) yields

U = (1436, +eun) f3% fo = 1+6/2+ B2 (6, +6un), (8.124,0)

where all speeds have been redimensionalized (¢ # 1) and we have set f, = ¢;,/c. In the first of
equations (8.12) there are classical (i.e. non-relativistic) contributions of p, and S#(S*) to the
numerator and relativistic contributions via f, to the denominator. By the same token, on
account of (6.14) and (8.11) we have

(%./p)* = 8ct[1+5€, +§(enr, — 2651)] > 0, (8.13)
5 11+4¢,—1 -
and (BB )+ = —— o f(GHL Zenn) _ g, (8.14)
41+%e,+§(egr, —26p7)
Consequently, after rearranging some terms and setting
p¥ — 41 + 3¢, + & (€1, — 26117) (8.15)

. - ‘L (1 + 361) +€IIT)%
we obtain

2 (14 3¢, +exrp) [1 +4€, — Hegy, — 26n7)]

by = 0% fo— B3.(1+ 36, + )]t 1 - L2 gt Sz T 8.16

1 [j‘O ﬂL( D IIT)] 4j‘0 1 +%€p+%(€HL_2€HT) s ( )
where b* is the non-relativistic value of 4,, f; is given by the second of equations (8.12) and is such
that fj = 14 0(c72), and the contributions in g are purely relativistic. Both the initial pressure
and magnetic field alter both the non-relativistic value 4* and the relativistic corrections.
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Obviously, as |#(S+)| goes to zero, (8.16) reduces to (6.22) of the purely elastic case. The
discussion of the behaviour of the solution of (7.38) is obviously the same as in the purely elastic
case except that €, is replaced by €,, and a strong discontinuity solution of the shock type implies
that [#%] # 0 across it. However, compressive wave fronts will eventually form shocks if and
only if, (6.10) and (6.13) being kept unchanged, the restrictive hypothesis materialized in the
first of (6.12) is relaxed in the following conditions

(€u)i < 0,[(€x),| > 8p*ek[1+3e, +§(eny, — 26pr)]- (8.17)
If the initial magnetic field is purely longitudinal (g = 0), by comparing (8.17) with (6.245),
we see that for a compressive wave to be generated at all magnetoelastic shocks the elastic
behaviour of the material must be more nonlinear (that is, with a more concave stress-strain
curve) in the presence of an initial magnetic field than when this magnetic field is switched
off. Concomitantly, if the initial magnetic field is purely transverse then this concavity need
not be as pronounced as in the purely elastic case since, then, the lower bound given by
(8.17) is diminished by 2p+c}, ey as compared with the purely elastic case. In that very sense we
may therefore say that a transverse magnetic field favours the steepening of infinitesimal magneto-
elastic wave fronts and the subsequent formation of magnetoelastic shocks, while a longitudinal
initial magnetic field does not. The effect thus described is classical in the sense that the behaviour
just observed, which consists of a balance of nonlinear elastic and magnetic effects, essentially
depends on 6* or #,. With the nonlinearity and concavity hypothesis (8.17) valid, and setting

ext = |[(€r)l/8pFed > O, (8.18)
as the non-dimensional positive parameter measuring the nonlinear elastic effect, we have
(@/p)+ = —8ek{ens, — [1+ e, +}(enw, — 2emn)]} < © (8.19)
1 1+4¢,—1 -2
and (R,)8,)* = t+dep—dlem—2emn) (8.20)

" deyy, —[1+36, +E (e —2emn)] T
The critical value of o at which the infinitesimal compressive-wave solution breaks down (or
blows up) is given by (cf. (8.16)) ‘

0o = 0o(er,, |Ug|, €p» €n1s €mms €x1.) < 0,
such that

Gy = — e Jo ' (1+ 3¢, +egp)}
4| Up| exp, — [1 +3€p + §(6nr, — 2€n7)]
1 -1
Nt s e = (e oy IR
The relativistic effects related to both g, and ¢ (S+) appear in this formula in an intricate manner
in the factor f; in the numerator and in the three terms at negative powers. Note that, on account
of (6.14) and (8.11)

Jo—PE(1+3e, +emn) = L€/ —fi(1+2e,). (8.22)
A similar transformation holds good for the last term in (8.21). Finally, for the most interesting
case of a purely transverse initial magnetic field we obtain

~ e fo (1+3%+€HT)%[1+€/52_ﬂf(1+2€p)]“*

Fo=— 220 : : 8.23
o 4|0,| [énr, — (1 + 36, —degr)] [1 + e/ + PEF (€, €xrs Enw) ] ( )
with f; given by (8.125) and
F (6 exms exs) = € +opgn + oot eun) (1446, & oqn) (8.24)

4[exny, — (1 +3€p) —enr]
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This completes the solution for the growth of elastically longitudinal magnetoelastic wave fronts
in a nonlinear elastic body in the presence of an initial state of high hydrostatic pressure and a
transverse magnetic field.
(b) Elastically transverse wave fronts
In this case m* = d*, d,P*#A; = 0. The invariant speed of the wave front is given by (4.38)
whereas the magnetic-field discontinuity is given by (4.39) irrespective of the setting of the initial
magnetic field. We have

b, = =220, 13, (8.25)
with Py =d, P55 d,d,, fi=d,f4d, (8.26)

Assuming that the working hypotheses (6.10), (6.12) and (6.13) hold true, after some calculation
we obtain (fy = ¢y /¢)

Ja=1+e/+ L filep +emp+enr(1—cos?0)], (8.27)
U = &1+ (e +enn)]fats (8.28)
€, = d,d, d,EFortQ A0, =0, (8.29)
Ry = —20Fd,d,d.d, = 0, (8.30)
(€x)q = d,d,d.E5F 7 252,20, = 0, (8.31)
and ('%M)d = da dd de '@ﬁuaeaﬂ
= 26f¢d, g~ pf87 d, Ay — (K- d) A, = 2p(H, -d) .. (8.32)

Since both &, and (@), are nil, b, = 0 in this case and elastically transverse wave fronts travel
with constant amplitude throughout S+ in spite of the presence of an initial magnetic field.

Consider now that (€g)q = d,d,d, FF7*As4, A5 # 0 a priori, hence that the body behaves
nonlinearly, while (6.10) and (6.13) are kept unchanged. We have then

(1—22)} (@E)d{ 2u | H, | H; cos (9}
by, = —Ft 22 g 8.33
2 pt B (€n)a (8.39)
in non-dimensional speeds. Setting
éxy = (€r)a/2p7el, . (8.34)
we obtain with dimensionalized speeds
by = 0**{f3—FR{1 + Eur(ep +enn) I
{1+ (8% /fabsr) [1+ Lo (ep +enn)] (enp ean)? cos 0}, (8.35)
A 3
where pE* =€AIA.[___@_T__~_~]2, 8.36
o, L1+ &un(e, +6nr) (8.36)

is the non-relativistic value of 4, . Since the critical value o, of the ray parameter o behaves like

71, an initial magnetic field that possesses a non-zero longitudinal component has the effect of
increasing this critical value at the non-relativistic order. That is, a longitudinal magnetic field delays
to some extent the occurrence of a shock solution. The fully relativistic expression of o, is given by

_ chl (G + (ep +enr) ]2
[Tyl éxrl1+€/c®+ & fRenn(1—cos?0)]

where |Uy| = |Uy(o = 0)|, £, is given by (8.27), and we have set

Ty [1 +€/62+ﬁT232-’(€p}6HL)€HT) éNL)]_I: (8‘37)

G A
F (€p> €1y, €uT> 6NL)

= Lurle, + e +enr(1 —cos?0)] =& + G le, +6nn) 1 (€nn eﬂT)% cosf.  (8.38)
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RAY THEORY AND SHOCK FORMATION 215
If the initial magnetic field is purely longitudinal this reduces to

o, (Eih+e,+ enr,)?

g, = —— 8.39
A e (329
whereas for a purely transverse initial magnetic field, we have
—1 %
gy =L, (G +¢,) (8.40)

|Up| exrl1 +€/c+ Epp BF €xp (1 — cos? 0)1%

If in addition the transverse elastic disturbance is polarized in such a way that U= is parallel or
antiparallel to 5#%(St) = 5% (S+), then the initial magnetic field has no effect on o, which then
depends only on ¢, and €y,

To conclude this section, in view of (8.36), (8.39) and (8.40), we can say that while a longi-
tudinal magnetic field may delay to some extent the formation of transverse magnetoelastic
shocks in a nonlinear elastic body in a state of high hydrostatic pressure at the non-relativistic order,
a purely transverse magnetic field, if not aligned with the transverse elastic disturbance, may
favour the formation of such shocks, but at the relativistic order, since it clearly decreases the value
of the critical parameter o, (cf. (8.40)). In any event, a nonlinear elastic behaviour is needed for
those effects to show up. Otherwise, an infinitesimal, elastic, transverse wave front traverses the
initial state without change in its amplitude.
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